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Density functional theory for a simple model of dendrimers is proposed. The theory is based on fundamental
measure theory, which accounts for the hard-sphere repulsion of the segments and on the Wertheim first-order
perturbation theory for the correlations due to connectivity. Set of the recurrence formulas for the ideal chain
contribution involving simple integrals is derived. By using perturbation theory dispersion forces can be easily
included.
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Dendrimers �also known as arborols or cascade mol-
ecules� are repeatedly branched monodisperse compounds
with a fractal-like structure possessing a high degree of sym-
metry. The first dendritic structure was constructed by Vögtle
et al. in 1978 �1� using a repetitive synthesis strategy �diver-
gent synthesis� such that one new molecular layer �genera-
tion� is created in each reaction cycle. Almost immediately
dendrimers attracted increasing attention due to their unique
structure implying some unique properties compared to tra-
ditional linear chains. With increasing number of generations
the number of chain-ends increases exponentially and that is
why dendrimers adopt a compact globular shape. As a con-
sequence the dendrimers’ solubility is driven by the nature of
surface groups only �2�. Moreover, the presence of internal
cavities enables encapsulation of small guest molecules �3�.
Such properties predestinate dendrimers for a variety of pos-
sible technological application. They are being developed for
use in fields such as catalysis, magnetic resonance imaging,
drug delivery, coatings, electronics, or cancer therapy �4–7�.

In terms of theoretical study and in particular of physical
model used, there are in principle two perspectives in treat-
ing such complex structures. First, one can use the so-called
coarse-graining technique treating molecules as spherically
symmetric objects interacting via some effective soft poten-
tial; i.e., the degrees of freedom of monomers composing the
polymer are integrated out. Perhaps the first who proposed
such a strategy was Flory �8�, but it has become popular only
in recent times �9,10�. The coarse-grained approach was ap-
plied for dendrimers by Götze et al. �11� who approximated
the interaction between two dendrimers in solution by an
appropriate Gaussian function. Even though the coarse-
graining method is attractive in simplifying the description
of a given complex structure substantially, it inevitably loses
some information about the intrinsic property of the mol-
ecules. Moreover, the radial symmetry of an effective poten-
tial is more justified in a bulk phase rather than, e.g., in the
vicinity of a wall. For these reasons, a second approach,
treating the complex molecular systems on an atomistic
level, would seem to be superior. Microscopic density func-
tional theory �DFT� provides a versatile and powerful tool to
represent the microscopic structures and interfacial phenom-
ena of polyatomic fluids under a variety of situations. After

the early works of Chandler et al. �12�, McMullen and Freed
�13�, and Woodward �14� developing DFT for polyatomic
systems, Kierlik and Rosinberg �15� generalized Wertheim’s
perturbation theory �TPT1� �16� for nonuniform fluids. Later
on, the latter has been reformulated by Yu and Wu �17� in
terms of the nonlocal DF framework proposed by Rosenfeld
�18� and eventually was extended for a variety of models
�19–21�. Another approach was developed by Yethiraj and
Woodward �22� that combines weighted density approxima-
tion with single chain Monte Carlo simulation. Recently,
such a so-called hybrid approach for the structure of den-
drimers has been proposed �23�. In this Brief Report, a full
density functional is derived and used to represent hard den-
drimers confined between two hard walls.

In the following, the term “dendrimer” will be taken to
mean the special case of a tree structure where each segment
apart from the terminating ones has the same number of
bonds, three at minimum. Due to the high level of symmetry
the system can be characterized by two parameters: �i� f ,
number of arms, i.e., bonds outcoming from each �except the
terminating� segment; �ii� M, the number of generations, i.e.,
number of segments contained in a chain connecting the cen-
tral and terminating segment minus one. Dendrimers with f
arms and M generations will be abbreviated by D�f ,M�.

Each dendrimer contains a central a segment, which is by
definition segment of generation 0. Segments of the ith gen-
eration are connected to the central segment by a chain of
i+1 segments. The number of segments of ith generation
is gi= f�f −1�i−1, i�1 and the total number of segments is

N= f 1−�f−1�M

2−f +1.
Segment positions are labeled by two indices; the sub-

script, i=0, . . . ,M, specifying the generation, and the super-
script, j=1, . . . ,g�i�, specifying the position in a given gen-
eration. The latter can be set in a clockwise order �in a two-
dimensional projection� such that segments ri

1 , . . . ,ri
f−1 are

connected to the segment ri−1
1 . Position of a whole dendrimer

can be expressed by a vector R=�i=0
M � j=1

g�i�ri
j.

The model under interest will be represented by tangen-
tially connected hard spheres of diameter �, each interacting
via potential � with an external field. The grand potential
functional of such a system can be expressed as �14,15�
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����N�R�� = �Fid��N�R�� + �Fex

+� ���R� − ���N�R�dR , �1�

where

�Fid =� dR�N�R��log �N�R� − 1�

+ �� dR�N�R�Vb�R� �2�

is the contribution corresponding to the system of ideal
chains that interact only through bounding potential, Vb�R�,
and the excess part that takes into account correlations be-
tween nonbonded segments

�Fex =� dr�	hs�n
�r�� + 	c�n
�r��� �3�

is split into the hard-sphere contribution 	hs and the contri-
bution due to the chain connectivity 	c.

�N�R� is the dendrimer density and ��R�=	i=0
M 	 j=1

g�i���ri
j�.

Further, Vb�R� is a sum of bounding potentials between the
neighboring segments creating the dendrimer structure,

exp�− �Vb�R�� = �
i=0

M−1

�
j=1

g�i�

�
k=−�i0

f−2
��
ri

j − ri+1
j�f−1�−k
 − ��

4��2 . �4�

Following Yu and Wu the free-energy densities 	hs�n
�r��
and 	c�n
�r�� are expressed as functions of four scalar and
two vector weighted densities �n
�r�� �17,18�. For the hard-
sphere contribution, 	hs�n
�r��, the so-called white-bear ap-
proach �or modified FMT� have been used, see Refs. �17,24�
for the explicit formulas.

The free-energy density due to indirect chain connectivity,
	c�n
�r��, was obtained as a generalization of Wertheim’s
first-order perturbation theory for a bulk fluid �16� for inho-
mogeneous systems within the nonlocal DFT framework
�17�

	c�n
�r�� =
1 − N

N
n0 ln�gHS��,�n
��� , �5�

where =1−n2 ·n2 / �n2�2, and the contact value of the hard-
sphere pair correlation function, gHS�� , �n
��, is obtained
from the Carnahan-Starling equation of state. The important
feature of this approach is that the problem is formulated on
the level of average segment density, ��r�, which is related to
the density of a whole dendrimer �N�R� via

��r� = 	
i=0

M

	
j=1

g�i�

�i
j�r� = 	

i=0

M

	
j=1

g�i� � dR��r − ri
j��N�R� �6�

where �i
j�r� is the density distribution of an individual seg-

ment.
A minimization of the grand potential functional with re-

spect to the density distributions gives rise to a set of the
following Euler-Lagrange equations:

�i
j�r� = exp����� dR��r − ri

j�exp�− �Vb�R����r� �7�

and

��r� = exp����� dR	
i=0

M

	
j=1

g�i�

��r − ri
j�exp�− �Vb�R����r� . �8�

Due to symmetry, �i
j�r� depends on its generation number

only, so that the upper index will be omitted. Function ��r� is
defined as

��r� = exp�− ��
i=0

M

�
j=1

g�i� � �Fex

��i
j�r�

+ ��ri
j�� . �9�

Specifically, the segment density distributions have been
calculated for hard-sphere dendrimers confined by two plane
hard walls placed a distance H apart, i.e., the external field
interacts with each segment with a potential

��z� = �� if z � �/2 or z � H − �/2
0 otherwise.

� �10�

For this system �i
j�r�=�i

j�z�, and the Euler-Lagrange equa-
tions have much simpler forms:

�0�z� = exp������z��GM�z�� f , �11�

�i�z� = exp������z��GM−i�z�� f−1G̃i�z� , i � 1. �12�

The functions Gi�z� and G̃i�z� are defined by the following
recurrence relations

Gi�z� =� dz���z���Gi−1�z��� f−1��� − 
z − z�
�
2� ,

i � 1, �13�

G̃i�z� =� dz���z��G̃i−1�z���GM−i+1�z��� f−2

�
��� − 
z − z�
�

2� ,
i � 2, �14�

with G0�z�=1 and

G̃1�z� =� dz���z���GM�z��� f−1��� − 
z − z�
�
2�

.

In Fig. 1 comparison of the density profiles for third gen-
eration D�3,3� with the profiles of linear chain polymers
comprising the same number of tangent segments, i.e., N
=22, is shown. The latter are obtained from the theory of Yu
and Wu �17�. The calculations have been performed for an
average bulk segment density of �b

�=�b�3=0.5. It is evident
from the upper panel that the average segment densities of
dendrimers and chains are very similar for such a density.
Both profiles exhibit oscillation characteristic with adsorp-
tion on the wall. The system is thus in the regime where the
structure of the fluid is dominated by excluded volume ef-
fects. In such a case the specific architecture of the molecules
plays a less important role and the system as a whole be-
haves like a hard-sphere system.
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Although the average segment densities are nearly identi-
cal, there are large differences in the densities of individual
segments. In Fig. 1�b� the density profiles of the terminal and
middle segments of chains are plotted. They both exhibit
qualitatively similar behavior to the average segment density,
with higher value of contact density for the terminal seg-
ment. This is because of a smaller loss of orientational en-
tropy if the terminal rather than the middle segment is at the
contact with the wall in the case of chains and because of
excluded volume interactions from the outer segments in the
case of dendrimers. The density profiles of the remaining
segments smoothly interpolate between these two curves.
The behavior observed for dendrimers is very different, see
Fig. 1�c�. In this case only the terminal segments are in a
regime where excluded volume effect dominates whereas all
other segments exhibit surface depletion. Clearly, the termi-
nal segments can be adsorb on to the wall more easily then
those of lower generations. Because the number of segments
of the highest generation is more than half of the total num-
ber of segments the adsorption for the average segment den-
sity persists. In all cases, there is a cusp in the density pro-
files a distance � from the sphere-wall contact position
which reflects harshness of the fluid-fluid and the fluid-wall
interaction.

The impact of the generation number on a structure of the
fluid is examined in Fig. 2. The calculations are carried out
for D�3,1�, D�3,3�, and D�3,5� for a bulk density �b

�=0.4.
Now significant differences for different architectures are ap-
parent in the average density profiles, see Fig. 2�a�. We ob-
serve a transition from surface adsorption for D�3,1� �the
simplest star polymer� to depletion for D�3,3� and D�3,5�.
Interestingly for the third generation dendrimer D�3,3� the
effect of depletion and adsorption almost compensate each
other. The density profiles of the zeroth generation segments
�the cores� and the terminal segment are compared in Figs.
2�b� and 2�c�, respectively. Whereas in all three cases the

zeroth segments exhibit depletion, adsorption is always
found for terminal segments. Larger differences are apparent
for the central segments, particularly in the slopes of the
profiles beyond the cusps, which change from negative to
positive with increasing M, being close to zero for D�3,3�.

In a final analysis, the solvation forces between the two
hard walls are calculated for two models, D�3,3� and the
equivalent linear chains of N=22 tangent segments. Accord-
ing to the sum rule, the solvation force FS per unit area A is
related to the average contact density through FS / �2AkbT�
=��0�−���0�, where ���0� is the average contact density for
infinite separation. In Fig. 3 the four regimes corresponding
to bulk densities �b=0.1, 0.3, 0.4, and 0.6 that the solvation
forces can obey for the two models under consideration are
presented. At the lowest density, Fig. 3�a�, the depletion
forces dominate, so that the solvation force is attractive for
small separations. At larger separations the attraction decays
monotonically to zero in the case of linear hard-sphere
chains whereas for dendrimers FS first changes sign and
eventually converges to zero. For intermediate densities,
Figs. 3�b� and 3�c�, both solvation force profiles exhibit a
maximum which is smooth for �b=0.3 but which for the
higher density of �b=0.4 becomes a cusp. At the highest
density of �b=0.6, Fig. 3�d�, the specific topology of mol-
ecules becomes irrelevant and both solvation force profiles
have very similar oscillatory characteristics of hard-sphere
systems.

In this work a density functional theory for an athermal
model of dendrimers is proposed. A compact recursive for-
mulas is derived involving both intramolecular and intermo-
lecular forces taking the form of simple integrals, which
greatly facilitates the numerical calculations. This is the first
step in a theoretical treatment of more realistic models of
dendrimers for which the theory can be straightforwardly
extended by using of a perturbation technique. It will enable
to study various interesting problems; for instance, one of the
controversy is whether dendrimers of higher generations
adopt a membranelike surface �25� or exhibit rather homo-
geneous segmental density due to back-folding effects �26�.
Behavior of dendrimers in concentrated solutions is also of

FIG. 1. �Color online� �a� The average segment density of third
generation dendrimers, D�3,3�, and linear chains, of N=22 seg-
ments. �b� Segment density profiles of the first and eleventh seg-
ments of linear chains, of N=22 segments. �c� Segment density
profiles of the zeroth, first, second, and third generations of the
dendrimer D�3,3�. The bulk segment density is �b

�=0.5. The hard
walls are separated by H=10�.

FIG. 2. �Color online� Density profiles of dendrimers D�3,1�,
D�3,3�, and D�3,5� for H=10� and �b

�=0.4. �a� The average seg-
ment density. �b� Segment density of cores �segments of zeroth
generation�. �c� Segment density of terminal segments.
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an interest. The quantitative agreement of DFT for star poly-
mers �the simplest case of dendrimers� derived on a similar
basis �20� with Monte Carlo data gives one confidence that
the theory developed in the present work provides an accu-
rate representation of dendrimeric systems. Mind that the
correlations due to intramolecular forces are included on the
basis of TPT1 and as that the theory is unsuited for high-
generation dendrimers and/or low-density regime. However,

only more detailed numerical tests for corresponding models
will reveal to what extent the proposed theory for dendrimers
is appropriate, a matter of current research.
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FIG. 3. �Color online� Solva-
tion forces between two hard
walls separated by third genera-
tion dendrimers D�3,3� �continu-
ous curves� and linear chains of
N=22 segments �dashed curves�.
The average bulk segment densi-
ties are �a� �b=0.1, �b� �b=0.3, �c�
�b=0.4, and �d� �b=0.6.
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